Orthogonal quadruple systems and 3-frames

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Frames of Translates

Two Bessel sequences are orthogonal if the composition of the synthesis operator of one sequence with the analysis operator of the other sequence is the 0 operator. We characterize when two Bessel sequences are orthogonal when the Bessel sequences have the form of translates of a finite number of functions in L(R). The characterizations are applied to Bessel sequences which have an affine struc...

متن کامل

A pair of orthogonal frames

We start with a characterization of a pair of frames to be orthogonal in a shift-invariant space and then give a simple construction of a pair of orthogonal shift-invariant frames. This is applied to obtain a construction of a pair of Gabor orthogonal frames as an example. This is also developed further to obtain constructions of a pair of orthogonal wavelet frames. ∗This work was supported by ...

متن کامل

Affine - invariant quadruple systems

Let t, v, k, λ be positive integers satisfying v > k > t. A t-(v, k, λ) design is an ordered pair (V,B), where V is a finite set of v points, B is a collection of k-subsets of V , say blocks, such that every t-subset of V occurs in exactly λ blocks in B. In what follows we simply write t-designs. A 3-(v, 4, 1) design is called a Steiner quadruple system and denoted by SQS(v). It is known that a...

متن کامل

On Quadruple Systems

( n — h\ 11 m — h\ I-hi I \l-hj is the number of those elements of S (I, m, n) which contain h fixed elements of E. It is known that condition (1) is not sufficient for S(l, m, n) to exist. It has been proved that no finite projective geometry exists with 7 points on every line. This implies non-existence of 5(2, 7, 43). There arises a problem of finding a necessary and sufficient condition for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2003

ISSN: 0097-3165

DOI: 10.1016/s0097-3165(03)00135-3